

en.longi-solar.com

f facebook.com/LONGiSolar

twitter.com/longi_solar

LONGI GREEN ENERGY

THE WORLD'S LEADING SOLAR TECHNOLOGY COMPANY

LONGi leads the solar PV industry to new heights with product innovations and optimized power-cost ratio with breakthrough monocrystalline technologies. LONGi supplies more than 30GW of high-efficiency solar wafers and modules worldwide yearly, about a quarter

of global market demand. LONGi is recognized as the world's most valuable solar technology company with the highest market value. Innovation and sustainable development are two of LONGi's core values.

LONGI SOLAR

TAKE THE LEAD IN VOLUME PRODUCTION FOCUS ON MONOCRYSTALLINE TECHNOLOGY

LONGi Solar is a subsidiary of LONGi Green Energy, believing that the core value of innovation lies in real world application, and volume production of the technology delivers true value. LONGi is committed to creating the maximum value for our global partners and customers.

Y2000

Establishment

4.76B(\$)*

Total Revenue

8.5B(\$)*

Total Assets

52.3%*

Debt Ratio

75GW

Wafer Capacity (Y2020 Proposed)

TIER 1

BNEF PV Module Maker AAA

PV Module **Tech Bankability Ratings** **30**GW

(Y2020 Proposed)

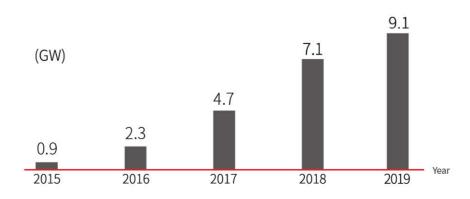
24.06% **Module Capacity** The Latest PERC Cell

Efficiency Record

LONGI INDUSTRY CHAIN

Mono Ingot

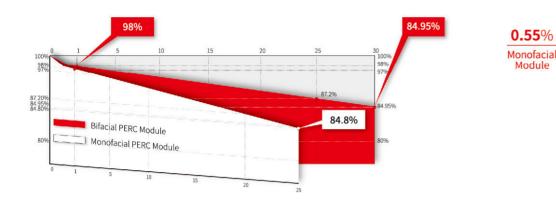
Mono Wafer



Mono Cell Mono Module LONGI SOLAR

Mono Photovoltaic Power Station

CELL & MODULE SHIPMENT OVER THE YEARS OF LONGI SOLAR


^{*}Based on the 2019 financial report of LONGi

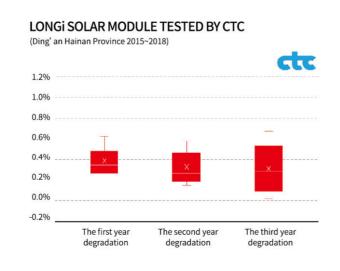
^{**} The Q1 2020 PV ModuleTech Bankability Ratings

WARRANTY

FIRST-YEAR POWER WARRANTY OF ≥98% FOR PV MODULES

Based on the advanced mono wafer and anti-LID technology, LONGi offers a first-year power warranty of \geq 98% for PV modules.

LONGi also provides a 12-years warranty for Material & Craftwork of PV modules, and a 25-years power warranty with a linear degradation inferior to 0.55% per year for monofacial module.


For the Bifacial module, the warranty prolongs to 30 years with a linear power degradation of 0.45% per year.

0.45%

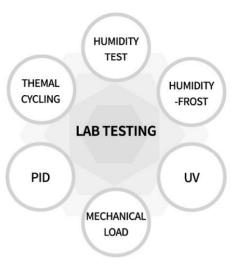
The low degradation property of LONGi's module is demonstrated by long-term outdoor test.

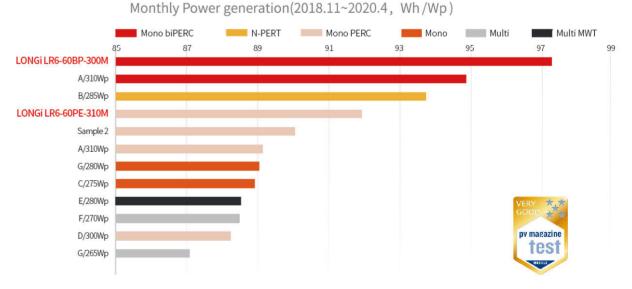
3.0% 2.5% 2.0% 1.5% 1.0% 0.5% 0.0% -1.0% Sanya Turpan Taizhou Taizhou Bifacial 350W

1ST YEAR DEGRADATION IN DIFFERENT CITY IN CHINA

QUALITY

RELIABILITY TEST


LONGi's modules have passed routine test of IEC and UL, and have an excellent performance in rigorous third-party test.



PERFORMANCE TEST

Rheinland "All Quality Matters" Award

2017 "Energy Yield Simulation" Award

2018 "Energy Yield Simulation" Award

2019 "Outdoor Energy Yield Monofacial Group" Award

2020 "Outdoor Energy Yield Monofacial Group" Award

"Outdoor Energy Yield Bifacial Group" Award

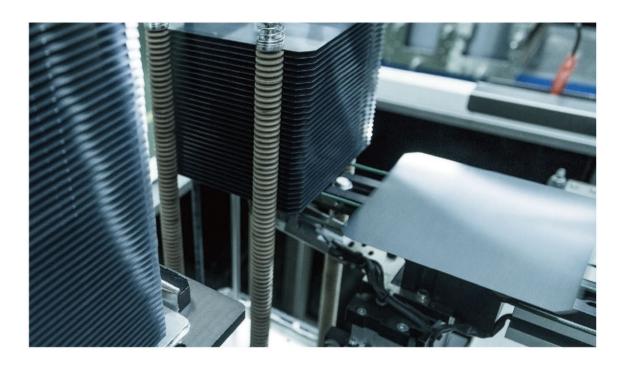
INGOT PULLING

RENDER PERC CELLS WITH HIGH EFFICIENCY AND LOW LID

As a leading company in monocrystalline industry, LONGi focus on reducing production cost by larger silicon loading, higher pulling speed. The RCZ technology was first successfully commercialized by LONGi. Also LONGi has improved the quality of silicon wafers by reducing oxygen content, carbon content and metal impurity, which render PERC cells with high efficiency and low LID.

RCZ Technology

Low LID



High Minority Carrier Lifetime & Low Resistivity

DIAMOND WIRE SLICING

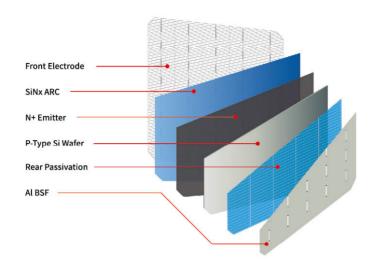
SIGNIFICANTLY INCREASES WAFER OUTPUT PER UNIT MASS

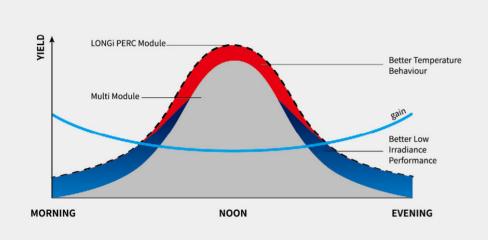
LONGi took the lead in diamond wire slicing technology, which significantly increases wafer output per unit mass. LONGi set the M2 standard of monocrystalline in the industry. And LONGi launched the M6 standard wafer in 2019 and the M10 standard wafer in this year. Each new standard can reduce module manufacturing cost and BOS cost and bring more value.

Diamond Wire Slicing

M2 Standard Wafer

M6 Standard Wafer

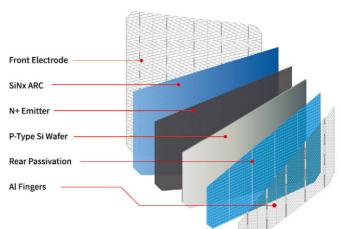

M10 Standard Wafer

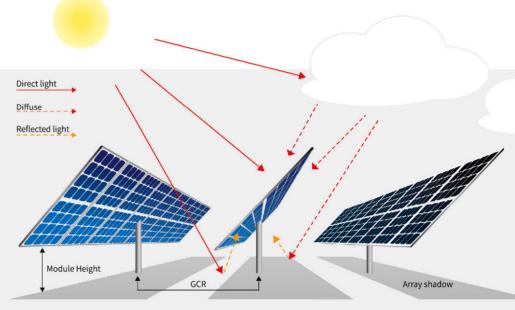

PERC TECHNOLOGY

HIGH EFFICIENCY & MORE ENERGY YIELD

The PERC cell has a passivated rear side and a laser grooving process, which significantly improves the cell efficiency.

In 2016, LONGi released the Hi-MO 1 module with PERC and Anti-LID technologies. At present, the cell efficiency has been increased from 21.0% to over 23.0%.


Outstanding low irradiance performance, low power-temperature coefficient, low operating temperature, all these technologies lead to a high energy yield.


BIFACIAL PERC TECHNOLOGY

HARVEST MORE LIGHT

For a bifacial PERC cell, the Al back surface field is replaced by Al grid, hence render the majority of rear side transparent which enable the cell to absorb light and generate electricity from both sides.

In 2017, LONGi released the Hi-MO 2 module with bifacial PERC and double-glass packaging. Hi-MO 2 module can absorb light on rear side, thus reuduce the LCOE of power plant significantly.

The energy yield of bifacial module can be influenced by albedo, height of module, GCR and DHI etc. Installation height of bifacial module is recommended to be higher than 1m. Shading from bracket and junction box should be avoided. At present, the power generation of bifacial module on fixed brackets and single axis tracker can be simulated with PVsyst. Investors can determine the DC / AC ratio of bifacial module system to minimize the LCOE.

1st Year Degradation, Anti-LID

Outstanding Low Irradiance Performance

Low Power Temperature Coefficient

Albedo

It has considerable gains on grass land, dry sand, especially in snowfield

Module Height

High module height will reduce the shading impact on rear side. A minimum of 1m is recommended

GCR

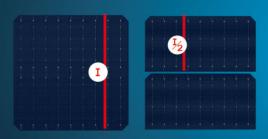
A low GCR will increase radiance on the rear side

DHI

Diffuse light can be absorbed by the rear side of the module. the higher proportion of Diffuse light, the higher is the bifacial gain.

HALF-CUT TECHNOLOGY

HIGHER POWER & MORE RELIABILITY


Half-cut cell technology is to cut the cell into two seperate parts by mature infrared laser, hence halve the working current. The thermal loss on the ribbon will be remarkably reduced and the module's power increases by 2%. The reliability of module is also enhanced.

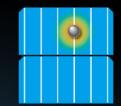
The combination of half-cut cell technology and bifacial module can amplify the gain over the effect of current-reduction.

In May 2019, LONGi released Hi-MO 4, the bifacial half-cell module using M6 (166mm) standard wafer.

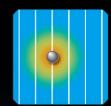
By the end of June 2020, the shipment of Hi-MO 4 has reached over 6GW.

In June 2020, LONGi released Hi-MO 5 module using M10 (182mm) standard wafer.

Monofacial or bifacial PERC cell module with half-cut technology has high power, the property of anti-PID, anti-LID (including LeTID), low hot spot temperature, excellent low irradiance performance and low power temperature coefficient.



PROPERTIES

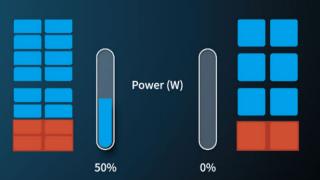

A Lower Hot Spot Temperature

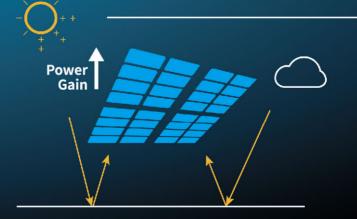
In field applications, small area shadings can cause the temperature of those parts extremely high. This phenomena is called hot spot. The long duration of hot spot could bring irreversible degradation of modules.

Because the string current of half-cell modules is half of full-cell modules, the hot spot temperature can be obviously reduced. LONGi's experiments show that this reduction could be 10-20°C, which increases the module reliability.

Hot-spot

Half-cell Full-cell Module Module Module Module Module


B Lower Operating Temperature


Half-cut cells have half of the working current, thereby the thermal loss is remarkably reduced. Operating temperature correspondingly decreases, and the reliability of module is improved as well as power gain.

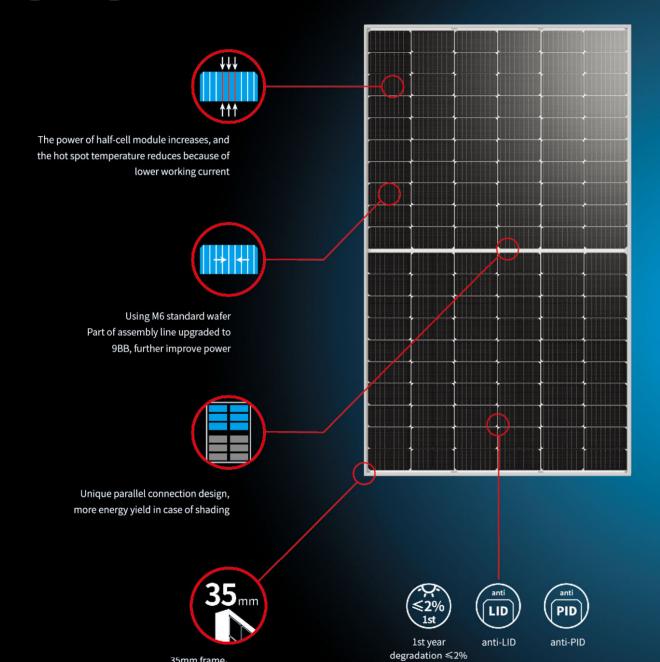
C Lower Shading Loss

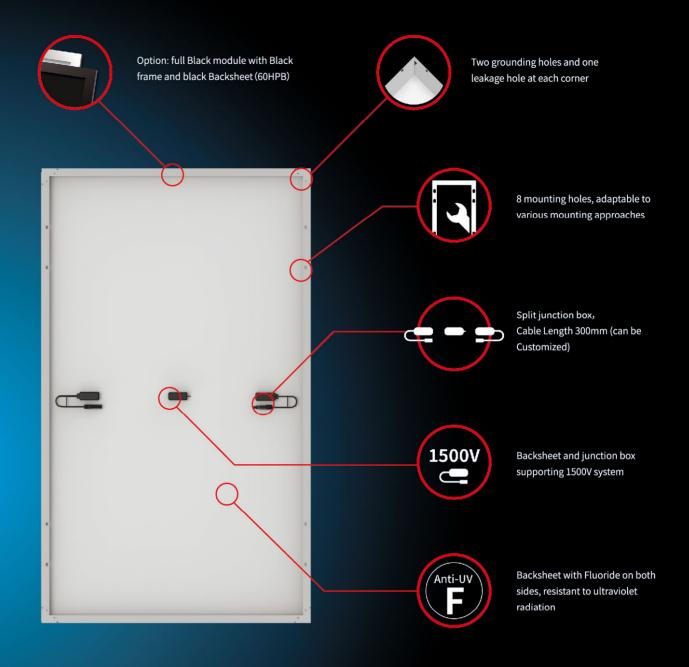
Because of the unique parallel connection design, half-cell modules still have 50% power output under the circumstance of array shading in sunrise or sunset when portrait installation.

In addition, half-cut technology can improve the output of bifacial module under non-uniform incident illumination on the backside.

D Higher Energy Yield Under High Irradiation Condition

Under high irradiation conditions, half-cell module, especially bifacial half-cell module, will have a higher energy yield compared with conventional module. Bifacial half-cell module will help to achieve the lowest LCOE in regions which is rich in sun radiation resources.


HIGH EFFICIENCY HALF-CELL MODULE


front / back side maximum static loading: 5400Pa/2400pa

Suitable for residential rooftop and C&I rooftop

ELECTRICAL CHARACTERISTICS AT STC

Hi-MO 4m			LR4-60HPH				
Pmp (W)	365	370	375				
Voc (V)	40.7	40.9	41.1				
Imp (A)	10.68	10.76	10.84				
Eff (%)	20.0	20.3	20.6				
Size / Weight	1755×1038×35mm / 19.5kg						
Cell Arrangement		10×6×2					

Technical data above mentioned may be of modification, please request for the latest datasheet.

HI-MO 4m			LR4-72HPH
Pmp (W)	440	445	450
Voc (V)	48.9	49.1	49.3
Imp (A)	10.71	10.78	10.85
Eff (%)	20.2	20.5	20.7
Size / Weight	2094	×1038×35mm/	^{23.5kg}
Cell Arrangement		12×6×2	

Technical data above mentioned may be of modification, please request for the latest datasheet.

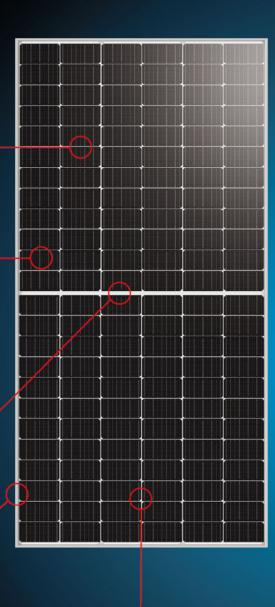
Hi-MO 4

BIFACIAL HALF-CELL MODULE

Suitable for C&I rooftop and large ground power plant

The power output of bifacial half-cell module increases and energy yield is higher under high irradiance condition because of Low working current

Using M6 standard wafer Part of assembly line upgraded to 9BB, further improve power


Unique parallel connection design, more energy output under non-uniform

Incident illumination on the backside

Framed module, front / back side maximum static loading 5400 / 2400Pa, suitable for tracker

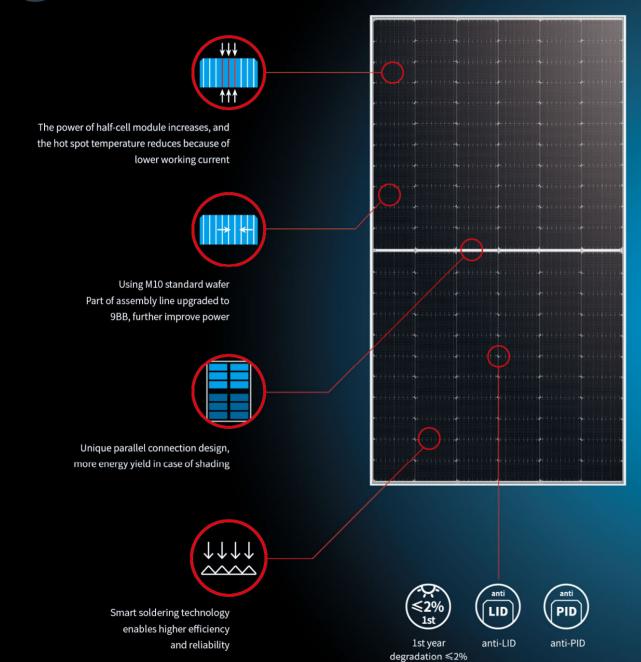
Cost can be reduced using 60 cells frameless module in low load condition

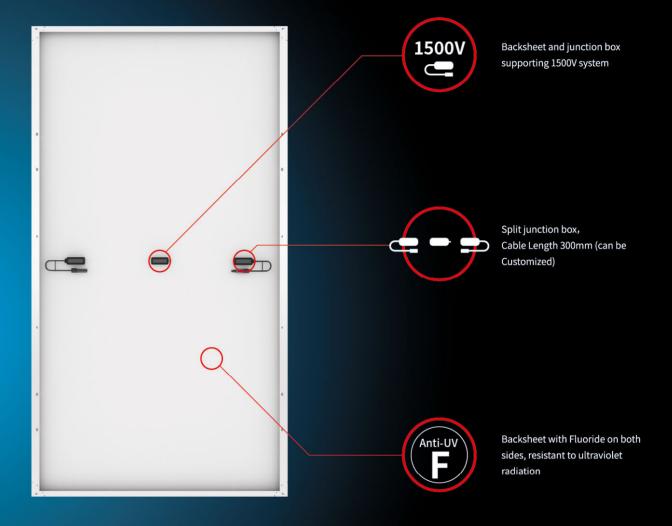
1st year degradation ≤2%

anti-PID

Design of short frame without C side can reduce the shading caused by Split junction box, Cable Length 300mm (can be Customized) Mounting holes with 400mm distance are added to match the horizontal single axis tracker Glass and junction box supporting 1500V 1500V system Reliable encapsulation using 2+2mm glass

ELECTRICAL CHARACTERISTICS AT STC

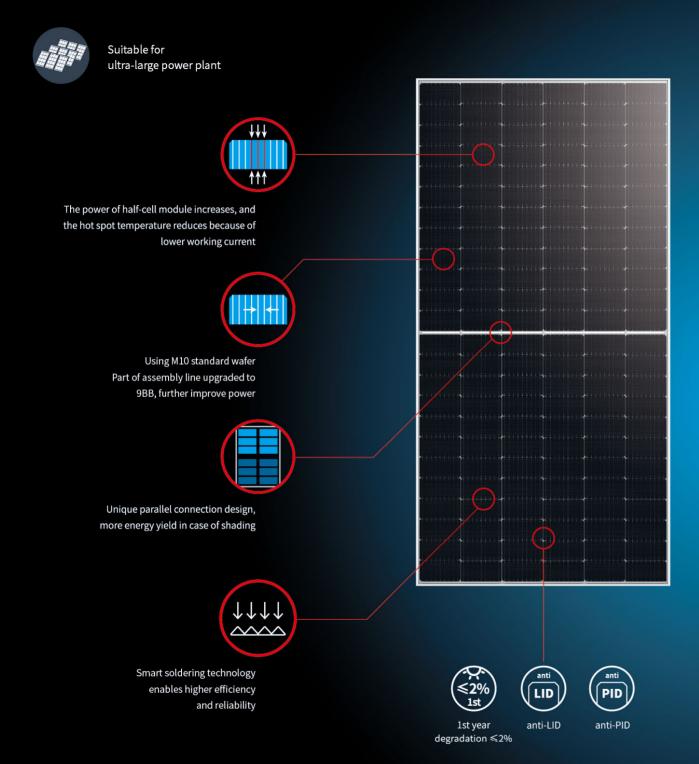

Hi-MO 4			LR4-72HBD
Pmp (W)	440	445	450
Voc (V)	49.2	49.4	49.6
Imp (A)	10.73	10.80	10.87
Eff (%)	20.2	20.5	20.7
Size / Weight		2094×1038×35mm / 27.5kg	
Cell Arrangeme	ent	12×6×2	

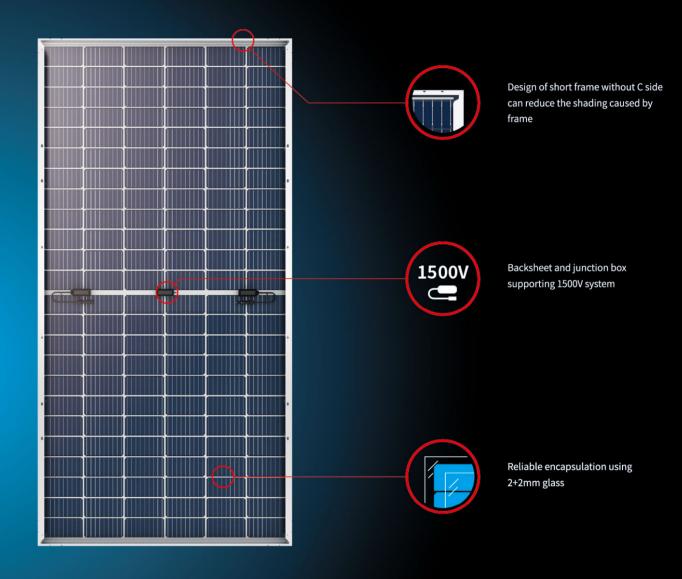

Technical data above mentioned may be of modification, please request for the latest datasheet.

HIGH EFFICIENCY MODULE

ELECTRICAL CHARACTERISTICS AT STC

Hi-MO 5m			LR5-66HPH	Hi-MO 5m		L	R5-72HPH
Pmp (W)	485	490	495	Pmp (W)	530	535	540
Voc (V)	45.10	45.25	45.40	Voc (V)	49.20	49.35	49.50
Imp (A)	12.79	12.87	12.95	Imp (A)	12.82	12.90	12.97
Eff (%)	20.6	20.9	21.1	Eff (%)	20.7	20.9	21.1
Size / Weight	2073×1133×35mm/25.1kg			Size / Weight	2256×1133×35mm/27.2kg		
Cell Arrangement		11× 6× 2		Cell Arrangement		12 × 6 × 2	


Technical data above mentioned may be of modification, please request for the latest datasheet.

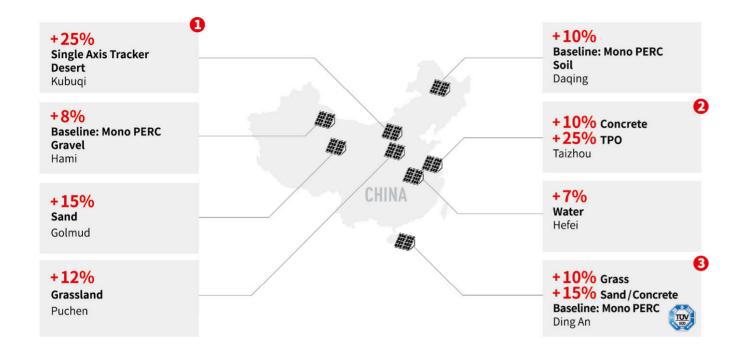

Technical data above mentioned may be of modification, please request for the latest datasheet.

16

HIGH EFFICIENCY BIFACIAL MODULE

ELECTRICAL CHARACTERISTICS AT STC

Hi-MO 5			LR5-66HBD	Ні-МО 5		LF	R5-72HBD
Pmp (W)	485	490	495	Pmp (W)	530	535	540
Voc (V)	45.10	45.25	45.40	Voc (V)	49.20	49.35	49.50
Imp (A)	12.79	12.87	12.95	Imp (A)	12.82	12.90	12.97
Eff (%)	20.6	20.9	21.1	Eff (%)	20.7	20.9	21.1
Size / Weight	2073×1133×35mm/30.1kg			Size / Weight	2256×1133×35mm/32.3kg		
Cell Arrangement		11× 6× 2		Cell Arrangement		12 ×6 × 2	


Technical data above mentioned may be of modification, please request for the latest datasheet.

Technical data above mentioned may be of modification, please request for the latest datasheet.

18

BIFACIAL CASE STUDY

BIFACIAL GAINS IN VARIOUS PLACES AND ENVIRONMENTS

Project location		Ground	Gain	Capacity	Baseline	Mounting	Statistical Period
•							
Chennai, India 4	TŪVRheinland Precisely Right.	White Gravel	19.2%	600Wp	Mono PERC	Fixed	2018.09~2019.02
Thuwal, Saudi Arabia	TŪVRheinland	Sand	10.0%	600Wp	Mono PERC	Fixed	2018.09~2019.02
Fremont, USA	RETC	Light Asphalt	10.6%	1.8kWp	Mono PERC	Fixed	2019.05~2019.06
Livermore, USA	REIC	Gravel	8.3%	2.1kWp	Mono PERC	Single axis tracker	2018.09~2018.10
Pahrump, USA	RETE	Gravel	10.9%	2.8kWp	Mono PERC	Fixed	2018.10~2019.07

KUBUQI, ORDOS, INNER MONGOLIA, CHINA

Bifacial Module Type: 350Wp*960 **Baseline:** Poly module 310Wp, 80MWp

Installation: Bifacial module on tracker with 12 degree,

Poly module on fixed bracket

Completion Date: May.2017 **Ground Condition:** Desert

Module Height: The center height of oblique uniaxle is 2.9m

Energy Yeild: ~25%

TAIZHOU, JIANGSU, CHINA

Bifacial Module Type: 350Wp*8
Baseline: Poly module 270Wp*10
Installation: Fixed Bracket
Completion Date: Aug. 2017
Ground Condition: Concrete / TPO

Module Height: 1m / 2m Energy Yeild: ~10 / 25%

DINGAN COUNTY, HAINAN PROVINCE, CHINA

Bifacial Module: 300Wp*10

Baseline: Mono PERC 300Wp*9

Installation: Fixed Bracket

Completion Date: Sep. 2018

Ground Condition: Grass / Concrete / Sand

Module Height: 1.5m

Energy Yeild: ~10% / ~15% / ~15%

CHENNAI, INDIA

Bifacial Module: 300Wp*2
Baseline: Mono PERC 310Wp*2
Installation: Fixed Bracket
Completion Date: Aug. 2018
Ground Condition: White gravel

Module Height: 1m Energy Yeild: ~19.2%



